LEXUS SAFETY SYSTEM+™
Features, Operation, Setting Adjustments, Limitations and Precautions

LEXUS SAFETY SYSTEM+
A COMPREHENSIVE SUITE OF ADVANCED TECHNOLOGIES

Collision protection starts with collision prevention. Collisions that result in injury may be caused by the delay in a driver’s recognition of the situation and his or her ability to react accordingly. According to NHTSA, there were almost 6.3 million reported crashes in 2015 – many of which were avoidable.

Lexus Safety System+ is designed to help protect drivers, passengers, people in other vehicles on the road and pedestrians from harm. Lexus Safety System+ is composed of advanced active safety packages anchored by automated pre-collision warning and braking. Lexus Safety System+ represents the latest milestone in our long history of creating advancements and innovations in safety that have helped prevent crashes and protect people.

LEXUS SAFETY SYSTEM+ ADDRESSES THE THREE MOST COMMON ACCIDENT TYPES

Lexus Safety System+ is designed to support driver awareness, decision-making and vehicle operation over a wide range of speeds under certain conditions. Packaged together in an integrated system, Lexus Safety System+ features help address three key areas of accident protection: preventing or mitigating frontal collisions, keeping drivers within their lane and enhancing road safety during nighttime driving. Always drive safely, obey traffic speed limits and laws and focus on the road while driving.

Lexus Safety System+ is comprised of four systems (with some variations shown as well):
1. Pre-Collision System with Pedestrian Detection
2. Lane Departure Alert | Lane Departure Alert with Steering Assist | Lane Keep Assist | Vehicle Sway Warning
3. Intelligent High Beam
4. High-Speed Dynamic Radar Cruise Control | All-Speed Dynamic Radar Cruise Control

© 2018 Lexus
PRE-COLLISION SYSTEM with PEDESTRIAN DETECTION

1. PRE-COLLISION SYSTEM with PEDESTRIAN DETECTION

Standard:

As there is a limit to the degree of recognition accuracy and control performance that this system can provide, do not overly rely on this system. This system will not prevent collisions or lessen collision damage or injury in every situation. Do not use Pre-Collision System3 with Pedestrian Detection6 instead of normal braking operations under any circumstances. Do not attempt to test the operation of the pre-collision system yourself, as the system may not operate or engage, possibly leading to an accident. In some situations, such as when driving in inclement weather (heavy rain, fog, snow, sandstorm, etc.) or while driving on a curve and for a few seconds after driving on a curve, a preceding vehicle/pedestrian may not be detected by the radar and camera sensors, preventing the system from operating properly.

VEHICLE DETECTION

Pre-Collision System3 with Pedestrian Detection6 uses an in-vehicle camera and front-grille-mounted millimeter-wave radar to help detect the vehicle in front of your vehicle.

• When the Pre-Collision System with Pedestrian Detection determines that the possibility of a frontal collision with that vehicle is high, it prompts the driver to take evasive action and brake, by using an audible and visual alert.
 • These alerts operate when the vehicle speed is between approximately 7 to 110 MPH for potential collisions with a vehicle.
 • If the driver notices the hazard and brakes, the system may provide additional braking force using Brake Assist10. This system may apply greater braking force in relation to how strongly the brake pedal is depressed.
 • If the driver does not brake in a set time and the system determines that the possibility of a frontal collision with another vehicle is extremely high, the system may automatically apply the brakes, reducing speed in order to help the driver reduce the impact and — in certain cases — avoid the collision.
 • Pre-Collision System with Pedestrian Detection may operate automated braking for potential collisions with a vehicle when vehicle speeds are between approximately 7 to 110 MPH10.
 • May reduce vehicle speed by up to 25 MPH for potential collisions with a vehicle10.

PEDESTRIAN DETECTION

In certain conditions, Pre-Collision System3 with Pedestrian Detection6 may also help to detect a preceding pedestrian.

• The in-vehicle camera of Pre-Collision System with Pedestrian Detection may detect a potential pedestrian based on size, profile and motion of the detected pedestrian. However, a pedestrian may not be detected depending on the conditions, including the surrounding brightness and the motion, posture, size and angle of the potential detected pedestrian, preventing the system from operating. Refer to the Owner’s Manual for additional information.
• Under certain conditions, if Pre-Collision System with Pedestrian Detection determines that the possibility of a frontal collision with a pedestrian is high, it prompts the driver to take evasive action and brake, by using an audible and visual alert, followed by Brake Assist10.
 • These alerts operate when the vehicle speed is between approximately 7 to 50 MPH.
 • If the driver does not brake in a set time and the system determines that the risk of collision with a pedestrian is extremely high, the system may automatically apply the brakes, reducing speed in order to help the driver reduce the impact and — in certain cases — avoid the collision.
 • Pre-Collision System with Pedestrian Detection may operate automated braking for potential collisions with a pedestrian when vehicle speeds are between approximately 7 to 50 MPH12.
 • Pre-Collision System with Pedestrian Detection may reduce vehicle speed by up to 19 MPH for potential collisions with a pedestrian12.

If the vehicle is stopped by the operation of the pre-collision brake function, the operation of the pre-collision brake hold will be canceled (brake will be released) after the vehicle has been stopped for approximately two seconds, to allow the vehicle to move if necessary. The driver of the vehicle must then determine whether brake or gas pedal application, or neither, is appropriate for the conditions.

Pre-Collision System2 with Pedestrian Detection6 automatic system cancellation may occur if there is a failure with Pre-Collision System with Pedestrian Detection, at which time the warning light turns ON or flashes and a warning message is displayed. The pre-collision braking function may not operate if certain operations are performed by the driver. If the accelerator pedal is being depressed strongly or the steering wheel is being turned, the system may determine that the driver is taking evasive action and possibly prevent the pre-collision braking function from operating. In some situations, while the pre-collision braking function is operating, operation of the function may be canceled if the accelerator pedal is depressed strongly or the steering wheel is turned and the system determines that the driver is taking evasive action.

The following setting(s) can be adjusted (varies by vehicle). Adjustments affect both vehicle and pedestrian detection together; they cannot be adjusted independently:
• Pre-Collision System with Pedestrian Detection alert timing (alert timing only; brake operation remains the same): Far – Mid (default) - Near.
• Pre-Collision System with Pedestrian Detection: turn function ON or OFF. If Pre-Collision System with Pedestrian Detection is turned off by the driver, Pre-Collision System with Pedestrian Detection will default back to ON with the Mid alert timing each time the ignition (IGN) is cycled.

Refer to a Lexus Owner’s Manual for additional information on Pre-Collision System with Pedestrian Detection operation, setting adjustments, limitations and precautions.
2a. LANE DEPARTURE ALERT

Standard:
LX 2016-18

Lane Departure Alert⁴ uses an in-vehicle camera designed to detect visible white and yellow lane markers in front of the vehicle and the vehicle’s position on the road. If the system determines that the vehicle is starting to unintentionally deviate from its lane, the system alerts the driver with an audible and visual alert. When the alerts occur, the driver must check the surrounding road situation and carefully operate the steering wheel to move the vehicle back to the center part of their lane.

As there is a limit to the degree of recognition accuracy and control performance that this system can provide, do not overly rely on this system. This system will not alert the driver of or help prevent unintentional lane departures in every situation. Do not use Lane Departure Alert instead of normal steering operations under any circumstances. In some situations, such as when driving in inclement weather such as heavy rain, fog, snow or a sandstorm or while driving on a curve and for a few seconds after driving on a curve, visible lane markers may not be detected by the camera sensor, preventing the system from operating or engaging properly.

• Lane Departure Alert⁴ is designed to function at speeds of approximately 32 MPH or higher on relatively straight roadways.
• The vehicle’s multi-information display indicates the system’s operating status (may vary by vehicle):
 • The inside of the displayed lines will be empty if the system is not able to detect the lane markings or if the system operation is temporarily disabled on one or both sides.
 • The inside of the lines will be filled in (usually white) if the system is able to detect the lane markings.
 • The inside of the lines will flash on the affected side (usually orange) when Lane Departure Alert⁴ is operating – this is the visual alert.

The following setting can be adjusted (varies by vehicle):
• Lane Departure Alert audible and visual alert: turn function ON or OFF and adjust alert sensitivity.

NOTE: Operation of the Lane Departure Alert⁴ system and setting adjustments continues in the same condition regardless of ignition cycle until changed by the driver or system is reset.

Refer to a Lexus Owner’s Manual for additional information on Lane Departure Alert⁴ operation, setting adjustments, limitations and precautions.

2b. LANE DEPARTURE ALERT with STEERING ASSIST

Standard:
IS 2017-18 | ES 2016-18 | NX 2018 | RC 2018 | RC F 2018

Lane Departure Alert with Steering Assist⁷ uses an in-vehicle camera designed to detect visible white and yellow lane markers in front of the vehicle and the vehicle’s position on the road. If the system determines that the vehicle is starting to unintentionally deviate from its lane, the system alerts the driver with an audible and visual alert. When the alerts occur, the driver must check the surrounding road situation and carefully operate the steering wheel to move the vehicle back to the center part of its lane.

In addition to the alert function of Lane Departure Alert, certain vehicles with electronic power steering (EPS) will feature a Steering Assist⁷ function. When equipped and enabled, if the system determines that the vehicle is on a path to unintentionally depart from its lane, the system may provide small corrective steering inputs to the steering wheel for a short period of time to help the driver keep the vehicle in its lane.

As there is a limit to the degree of recognition accuracy and control performance that this system can provide, do not overly rely on this system. This system will not alert the driver of or help prevent unintentional lane departures in every situation. Do not use Lane Departure Alert with Steering Assist instead of normal steering operations under any circumstances. In some situations, such as when driving in inclement weather such as heavy rain, fog, snow or a sandstorm, or while driving on a curve and for a few seconds after driving on a curve, visible lane markers may not be detected by the camera sensor, preventing the system from operating or engaging properly.

• Lane Departure Alert with Steering Assist⁷ is designed to function at speeds of approximately 32 MPH or higher on relatively straight roadways.
• The vehicle’s multi-information display indicates the system’s operating status (may vary by vehicle):
 • The inside of the displayed lines will be empty if the system is not able to detect the lane markings or if the system operation is temporarily disabled on one or both sides.
 • The inside of the lines will be filled in (usually white) if the system is able to detect the lane markings.
 • The inside of the lines will flash on the affected side (usually orange) when Lane Departure Alert with Steering Assist⁷ is operating – this is the visual alert.

LEXUS SAFETY SYSTEM+™
Features, Operation, Setting Adjustments, Limitations and Precautions

visual alert.

• Outside of the filled-in lines will flash on the affected side (usually green) if Steering Assist function is operating.

The following settings can be adjusted (varies by vehicle):

• Lane Departure Alert with Steering Assist audible and visual alert: turn function ON or OFF and adjust alert sensitivity.
• Steering Assist function: turn the Steering Assist function ON or OFF and adjust sensitivity.
• Vehicle Sway Warning: turn function ON or OFF and adjust alert sensitivity.

NOTE: Operation of the Lane Departure Alert with Steering Assist system and setting adjustments continues in the same condition regardless of ignition cycle until changed by the driver or system is reset.

Refer to a Lexus Owner’s Manual for additional information on Lane Departure Alert with Steering Assist operation, setting adjustments, limitations and precautions.

2c. LANE DEPARTURE ALERT with STEERING ASSIST and LANE KEEP ASSIST

Standard:

GS 2016-18 | GS F 2018 | LS 2018 | RX 2016-18 | LC 2018

This system is only a driver assist function, and will deactivate when the driver is not holding the steering wheel and steering.

• The system assists the driver with some of the steering operations necessary for staying in the current visibly marked lane while the Dynamic Radar Cruise Control* is on.
• Using the DISP switch on the steering wheel, the Lane Center Assist for the Lane Keep Assist can be activated or deactivated on the customization display of the Multi-information Display.

* When Dynamic Radar Cruise Control is not in operation, the Lane Keep Assist function does not operate either.

2d. VEHICLE SWAY WARNING

Standard:

This function monitors the vehicle’s position within the lane and the driver’s steering operations in order to detect vehicle sway, which tends to occur when the driver’s ability to concentrate on driving deteriorates due to factors such as drowsiness, inattentiveness or distraction. The driver will be alerted prior to instances such as deviating from the road.

When vehicle sway such as listed below is detected, the function alerts the driver by sounding a buzzer and displaying a warning indicator on the Multi-information Display.

• Continuous lane departure due to vehicle sway
• Gentle swaying, which tends to occur when the driver loses concentration
• Abrupt steering operation following a period of less frequent steering operations, which tends to occur when the driver loses concentration

The Vehicle Sway Warning function can be activated or deactivated, and its sensitivity can be changed, on the Multi-information Display customization display using the DISP switch on the steering wheel.

3. INTELLIGENT HIGH BEAM

Standard:

Intelligent High Beam is a safety system designed to help drivers see more of what’s ahead at nighttime without dazzling other drivers. When enabled, Intelligent High Beam uses an in-vehicle camera to help detect the headlights of oncoming vehicles and taillights of preceding vehicles, then automatically switches between high and low beams as appropriate to provide the most light possible and enhance forward visibility. By using high beams more frequently, the system may allow earlier detection of a preceding pedestrian and obstacles.

As there is a limit to the degree of recognition accuracy and control performance that this system can provide, do not overly rely on this system. This system will not cycle headlights between low and high beams in every situation. In some situations, such as when driving in inclement weather such as heavy rain, fog, snow or a sandstorm, or while driving on a curve and for a few seconds
after driving on a curve, forward lights may not be detected by the camera sensor, preventing the system from operating or engaging properly.

- Intelligent High Beam is designed to function at speeds of approximately 25 MPH or higher. Minimum speed may vary by vehicle.

The following setting(s) can be adjusted:
- Intelligent High Beam: turn function ON or OFF.

Refer to a Lexus Owner’s Manual for additional information on Intelligent High Beam operation, setting adjustments, limitations and precautions.

4a. HIGH-SPEED DYNAMIC RADAR CRUISE CONTROL

Standard:
IS 2017-18 | **ES** 2016-18 | **GS F** 2016-17 | **RC** 2018 | **RC F** 2018

On highways or expressways, Dynamic Radar Cruise Control functions similar to conventional "constant speed" cruise control in that it helps vehicles travel at a consistent speed set by the driver, but this system adds a vehicle-to-vehicle distance control mode, which assists the driver by adjusting vehicle speed (within a set range) to help maintain a pre-set distance to a preceding vehicle when the preceding vehicle is traveling at a lower speed.

Once a vehicle speed is set by the driver, Dynamic Radar Cruise Control uses a grille-mounted millimeter-wave radar and an in-vehicle camera to detect a preceding vehicle and help determine its distance. If the vehicle ahead is detected traveling at a speed slower than your set speed or within your distance range setting, the system is designed to automatically decelerate your vehicle without having to cancel the cruise control. When a greater reduction in vehicle speed is necessary, the system may apply the brakes and operate your vehicle brake lights. The system will then respond to changes in the speed of the vehicle ahead in order to help maintain the vehicle-to-vehicle distance set by the driver. When there is no longer a preceding vehicle driving slower than your vehicle’s set speed, the system accelerates until the set speed is reached and returns to constant speed cruising.

As there is a limit to the degree of recognition accuracy and distance/deceleration control performance that this system can provide, do not overly rely on this system. This system will not operate in every situation. In some situations, such as when driving in inclement weather such as heavy rain, fog, snow or a sandstorm, or while driving on a curve and for a few seconds after driving on a curve, a preceding vehicle may not be detected by the camera/radar sensors, preventing the system from operating or engaging properly.

- Dynamic Radar Cruise Control is designed to function at speeds of approximately 25 to 110 MPH. However, vehicle speed must be above approximately 28 MPH to initiate Dynamic Radar Cruise Control as that is the lowest set speed.

The following setting(s) can be adjusted:
- Vehicle-to-vehicle distance settings, or distance between your vehicle and the preceding vehicle: Long - Medium (default) - Short.

Refer to a Lexus Owner’s Manual for additional information on Dynamic Radar Cruise Control operation, setting adjustments, limitations and precautions.

4b. ALL-SPEED DYNAMIC RADAR CRUISE CONTROL

Standard:
GS 2016-18 | **GS F** 2018 | **LS** 2018 | **NX** 2018 | **RX** 2016-18 | **LX** 2016-18 | **LC** 2018

Select vehicles may also feature All-Speed Dynamic Radar Cruise Control, which is designed to also cover speeds below 25 MPH. All-Speed Dynamic Radar Cruise Control is designed to function at approximately 0 to 110 MPH. All-Speed Dynamic Radar Cruise Control may enable low-speed following, speed matching, stopping and acceleration/deceleration relative to a preceding vehicle.

- An all-speed following function has been added to the DRCC system.
- Using equipment such as millimeter-wave radar and a camera sensor, the system can recognize the vehicle traveling ahead and then mirror the speed of the preceding vehicle until it stops while maintaining a set distance between vehicles.
- Since the vehicle may stop while maintaining an appropriate distance to the vehicle ahead, the system may help reduce driver burden when driving in congested highway traffic.
- When there is no vehicle traveling ahead, the vehicle travels at a constant speed in accordance with the speed setting.
- By implementing following control at all vehicle speeds, the system may help alleviate driving fatigue and supports efforts to maintain a set distance between vehicles.
PRECAUTIONS: PRE-COLLISION SYSTEM WITH PEDESTRIAN DETECTION

Pre-Collision System with Pedestrian Detection is premised on safe driving by the driver. It is not a system that will avoid collisions under all conditions. Do not depend on the system or use it in place of emergency brake operation.

Pre-Collision System with Pedestrian Detection operation is dependent on the front-grille-mounted millimeter-wave radar and in-vehicle camera’s ability to detect and see clearly a preceding vehicle or pedestrian on relatively straight roadways, as well as the visibility/detectability of the preceding vehicle/pedestrian itself. Pre-Collision System with Pedestrian Detection may not operate if it cannot recognize a visible preceding vehicle or pedestrian. Pre-Collision System with Pedestrian Detection is not designed to detect animals. Situations such as a logged, dirty, broken, or tinted windshield or ice, rain, snow, or sticker-covered windshield blocking the camera or laser may affect Pre-Collision System with Pedestrian Detection operation. Intense light from the front or inclement weather obstructing camera visibility or laser detection, or sharp curves in the road, may affect Pre-Collision System with Pedestrian Detection operation. Also, changes to the vehicle’s height or angle from load, suspension or tire modifications or chains may affect Pre-Collision System with Pedestrian Detection operation. Furthermore, if a preceding vehicle cannot be correctly recognized, there are cases where unneeded driver alerts / automatic braking may occur, so the driver needs to pay continuous attention to the surrounding conditions, the direction of travel and vehicle’s location on the road. Ultimately, the driver is responsible for brake input, vehicle speed, distance to a preceding vehicle and operation at all times.

VEHICLE DETECTION MAY NOT OPERATE IN THE FOLLOWING CONDITIONS:

In the following types of environment, the system may not be able to recognize vehicles in front and may not operate:

- If the vehicle in front does not have its taillights on at night or in a tunnel
- If camera recognition conditions are poor shortly after starting the vehicle or when the camera is hot, such as when parked in the sun
- Light (dusk, dawn, etc.), when driving without headlights at night or in a tunnel
- Reacting to Electronic Toll Collection (ETC) bar when passing through an ETC gantry
- Intense light from the front or inclement weather obstructing camera visibility or laser detection, or sharp curves in the road.
- Motorcycle or bicycle may not be detected
- When passing through parked cars or driving between vehicles
- When passing near a pedestrian or through a group of pedestrians
- When passing under a bridge or narrow tunnel
- When very close to the vehicle in front (distance of approximately 6.5 feet or less) or coming close to a preceding vehicle after making a lane change
- When there is a metal object or protrusion on the road surface or items dropped onto the road
- When there is an obstacle or parked car at the point of entering a curve, in a curve or at an intersection
- When something is on the sensor such as bugs, dirt, ice, etc.

The system does not operate when the following operations are performed:

- While VSC® is activated
- While the accelerator is pressed
- While the brake is pressed
- While backing up
- While driving at very high speeds

PRE-COLLISION SYSTEM WITH PEDESTRIAN DETECTION MAY OPERATE IN THE FOLLOWING CONDITIONS, EVEN IF A COLLISION IS NOT LIKELY:

- When there is an obstacle or parked car at the point of entering a curve, in a curve or at an intersection
- When passing through a narrow steel bridge or through a low ceiling area like a tunnel or parking structure
- When there is a metal object or protrusion on the road surface or items dropped onto the road
- When passing an opposing vehicle when turning right or left or passing an opposing vehicle around a curve
- When driving on an uneven road or in weeds
- When suddenly getting close to another vehicle that is driving ahead
- Upon seeing a raised intersection, sign or advertisement board/vinyl in front of the vehicle
- While driving up or down a slope, where metal such as a steel plate (manhole cover) is in front of the vehicle
- Reacting to Electronic Toll Collection (ETC) bar when passing through an ETC gantry
- When sensor direction is offset due to a strong impact near the sensor
- When passing under a bridge or narrow tunnel
- When passing near a pedestrian or through a group of pedestrians
- When there is a pedestrian to the front of your vehicle (on a sidewalk)
- While passing near a pedestrian or through a group of pedestrians
- If a pedestrian suddenly crosses in front of your vehicle, or suddenly stops while crossing
- When passing a leading vehicle or when a leading vehicle turns to the left or right
- When passing through parked cars or driving between vehicles
- When driving on a narrow road with roadside guardrails, telephone poles, trees, etc.

THE FOLLOWING TYPES OF PEDESTRIANS MAY NOT BE DETECTED OR PRE-COLLISION SYSTEM WITH PEDESTRIAN DETECTION MAY NOT OPERATE:

- Pedestrians that suddenly appear from behind or alongside a vehicle
- Pedestrians close to abrupt changes in lighting such as at tunnel exits
- Pedestrians wearing white that reflects sunlight

This section is abbreviated and does not include all precautions or limitations. Refer to a Lexus Owner’s Manual for a more comprehensive description of system operation, precautions and limitations.
LEXUS SAFETY SYSTEM+™
Features, Operation, Setting Adjustments, Limitations and Precautions

Lane Departure Alert 4 operation is dependent on the in-vehicle camera’s ability to see clearly and detect visible lane markers on relatively straight roadways, as well as the visibility of the lane markers themselves. Lane Departure Alert 4 does not operate if it cannot recognize visible lane markers. Situations such as a fogged, dirty, broken, or tinted windshield or ice, rain, snow, or sticker-covered windshield blocking the camera may affect Lane Departure Alert 4 operation. Also, changes to the vehicle’s height or angle from suspension or tire modifications or chains may affect Lane Departure Alert 4 operation. Furthermore, if lane markers cannot be correctly recognized, there are cases where unneeded driver alerts may occur, so the driver needs to pay continuous attention to the surrounding conditions, the direction of travel and vehicle’s location on the road. Ultimately, the driver is responsible for steering input and vehicle operation at all times.

SYSTEM MAY NOT OPERATE AS DESIGNED UNDER THE FOLLOWING CONDITIONS:

1. Bad weather conditions such as rain, fog, snow, dust storm, etc., blocking camera visibility or lane marker visibility
2. When driving around locations with sharp curves or undulations or for a period of time after turning due to camera recognition

Other:
- If there is construction on the side of the road that may be misidentified as a white line (such as a guardrail, curb, reflection pole, etc.)
- When driving at a branching or merging road location
- When pulling a trailer due to angle changes from load

SYSTEM OPERATION MAY BE REDUCED UNDER THE FOLLOWING CONDITIONS:

1. If the camera faces the wrong direction due to damage or misalignment

Other:
- If lane markers have been rubbed off, removed or can’t be seen due to dirt, rain, snow cover or fog
- Road surface is bright (strong light reflection), light (concrete), wet (rainy weather, after rainfall, puddles, etc.)

SYSTEM MAY STOP TEMPORARILY UNDER THE FOLLOWING CONDITION:

1. When amount of light changes dramatically (tunnel exit/entrance)
2. If the vehicle moves up and down (uneven/bumpy road) or when driving on slippery roads, where camera angle changes relative to the lane markers
3. When the camera is bathed in strong light (headlights from opposing vehicle, sunlight, reflection from surrounding vehicles)

THE SYSTEM WILL NOT OPERATE IN THE FOLLOWING CONDITIONS:

1. If driving on an unpaved road
2. When driving too close to a preceding vehicle, blocking the camera from seeing the lane markers

Other:
- If the windshield is fogged up

4. Pedestrians walking in a group
5. Pedestrians staying close to or walking alongside a wall, fence, guardrail, vehicle or other obstacle
6. Pedestrians with brightness similar to scenery and that blend into the background
7. Pedestrians walking at high speed of approximately 5 MPH or higher
8. Pedestrians that abruptly change walking speed
9. Pedestrians colliding with the edge of the vehicle
10. Pedestrians walking on top of metal on the road surface
11. Pedestrians that are 3 feet or shorter or 6.5 feet or taller
12. Pedestrians whose silhouette is hidden by a raincoat, coat, long skirt, etc.
13. Pedestrians where a part of their body is hidden by any object
14. Pedestrians holding, shouldering or carrying a large package or using an umbrella
15. Pedestrians leaning forward, crouching, lying down or standing still upright
16. Pedestrians pushing a stroller, wheelbarrow, bicycle, etc.

PRECAUTIONS: LANE DEPARTURE ALERT

Lané Departure Alert 4 operation is dependent on the in-vehicle camera’s ability to see clearly and detect visible lane markers on relatively straight roadways, as well as the visibility of the lane markers themselves. Lane Departure Alert 4 does not operate if it cannot recognize visible lane markers. Situations such as a fogged, dirty, broken, or tinted windshield or ice, rain, snow, or sticker-covered windshield blocking the camera may affect Lane Departure Alert 4 operation. Also, changes to the vehicle’s height or angle from suspension or tire modifications or chains may affect Lane Departure Alert 4 operation. Furthermore, if lane markers cannot be correctly recognized, there are cases where unneeded driver alerts may occur, so the driver needs to pay continuous attention to the surrounding conditions, the direction of travel and vehicle’s location on the road. Ultimately, the driver is responsible for steering input and vehicle operation at all times.

SYSTEM MAY NOT OPERATE AS DESIGNED UNDER THE FOLLOWING CONDITIONS:

1. Bad weather conditions such as rain, fog, snow, dust storm, etc., blocking camera visibility or lane marker visibility
2. When driving around locations with sharp curves or undulations or for a period of time after turning due to camera recognition

Other:
- If there is construction on the side of the road that may be misidentified as a white line (such as a guardrail, curb, reflection pole, etc.)
- When driving at a branching or merging road location
- When pulling a trailer due to angle changes from load

SYSTEM OPERATION MAY BE REDUCED UNDER THE FOLLOWING CONDITIONS:

1. If the camera faces the wrong direction due to damage or misalignment

Other:
- If lane markers have been rubbed off, removed or can’t be seen due to dirt, rain, snow cover or fog
- Road surface is bright (strong light reflection), light (concrete), wet (rainy weather, after rainfall, puddles, etc.)

SYSTEM MAY STOP TEMPORARILY UNDER THE FOLLOWING CONDITION:

1. When amount of light changes dramatically (tunnel exit/entrance)
2. If the vehicle moves up and down (uneven/bumpy road) or when driving on slippery roads, where camera angle changes relative to the lane markers
3. When the camera is bathed in strong light (headlights from opposing vehicle, sunlight, reflection from surrounding vehicles)

THE SYSTEM WILL NOT OPERATE IN THE FOLLOWING CONDITIONS:

1. If driving on an unpaved road
2. When driving too close to a preceding vehicle, blocking the camera from seeing the lane markers

Other:
- If the windshield is fogged up

This section is abbreviated and does not include all precautions or limitations. Refer to a Lexus Owner’s Manual for a more comprehensive description of system operation, precautions and limitations.
PRECAUTIONS: INTELLIGENT HIGH BEAM

Intelligent High Beam® operation is dependent on the in-vehicle camera’s ability to see clearly and detect preceding headlights or taillights, as well as the visibility of the preceding headlights or taillights themselves. Situations such as a fogged, dirty, broken, or tinted windshield or ice, rain, snow, or sticker-covered windshield blocking the camera may affect Intelligent High Beam® operation. It is the driver’s responsibility to pay attention to his or her surroundings and directly confirm safety of surroundings by turning high beams ON and OFF manually as needed.

IN THE FOLLOWING CONDITIONS, THE SYSTEM MAY NOT BE ABLE TO ACCURATELY DETECT SURROUNDING VEHICLES AND LIGHT:

1. Bad weather conditions such as rain, fog, snow or a dust storm
2. A road with frequent curves or when there is a sharp curve
3. When driving on a road that is uneven (rough roads such as stone paving, gravel road, unpaved road, etc.)
4. If a vehicle in front is driving without lights or using irregular lights, odd color lights or where the light axis is offset
5. When road conditions go up and down frequently

Other:

• When the windshield reflects something on the dashboard
• When there is light similar to headlights or taillights in the vicinity
• If there is a vehicle in front with very dirty headlights or taillights
• When surroundings become light and dark frequently
• When there is an object in front that strongly reflects light (mirror, sign, etc.)
• When the vehicle is inclined front to back or side to side while driving (load, tire pressure, changes to suspension, when being towed)
• When there is a problem with the vehicle or if modified

PRECAUTIONS: DYNAMIC RADAR CRUISE CONTROL

Dynamic Radar Cruise Control® is a system primarily for driving on expressways and highways. With regard to traffic conditions on general roads, there are cases where it will not operate appropriately and could lead to an accident. In these situations, do not use Dynamic Radar Cruise Control. Dynamic Radar-Cruise Control® operation is dependent on the millimeter-wave radar’s ability to detect a preceding vehicle, as well as the detectability of the preceding vehicle itself. While driving, the driver will need to continually pay attention to distance between vehicles with the leading vehicle and surroundings, and decelerate and accelerate themselves to ensure distance between their vehicle and preceding or following vehicles is safe. Situations such as a broken, dirty, ice, rain, snow, film, or sticker-covered front Lexus emblem blocking the radar, all may affect Dynamic Radar Cruise Control® operation.

IN THE FOLLOWING CONDITIONS, DYNAMIC RADAR CRUISE CONTROL® MAY LEAD TO AN UNEXPECTED ACCIDENT, SO DO NOT USE THE SYSTEM:

1. Bad weather conditions, such as rain, fog, snow or a dust storm
 • When the system judges weather to be bad, there are cases where it automatically turns OFF
2. Raindrops, snow, ice, road debris, or film/metal coatings on the millimeter-wave radar sensor (badge or cover)
 • If the system detects film, it may automatically turn OFF

Other:

• Roads with a lot of traffic or around a sharp curve
• Slippery road surfaces, such as icy or snowy roads
• Steep inclines
• Traffic conditions leading to frequent acceleration and deceleration
• When leaving lane while on an expressway, etc.
• When vehicle is being towed

IN THE FOLLOWING CONDITIONS, THE SYSTEM IS NOT ABLE TO ACCURATELY DETECT LEADING VEHICLES AND MAY NOT BE ABLE TO MAINTAIN APPROPRIATE DISTANCE BETWEEN VEHICLES:

1. When the leading vehicle is pulling an empty trailer, etc., making rear surface area very small (including motorcycles)
2. When vehicle angle or stance changes dramatically due to load, changes to suspension, tire pressure, etc.

This section is abbreviated and does not include all precautions or limitations. Refer to a Lexus Owner’s Manual for a more comprehensive description of system operation, precautions and limitations.
IN THE FOLLOWING CONDITIONS, DETECTION OF THE LEADING VEHICLE MAY BE DELAYED OR MAY NOT BE POSSIBLE:

- When a leading vehicle cuts in front of your vehicle at a close distance
- Motorcycle driving at the edge of the lane

IN THE FOLLOWING CONDITIONS, THE SYSTEM MAY INADVERTENTLY OPERATE OR MAY NOT BE ABLE TO DETECT THE LEADING VEHICLE:

1. In a curve or when the lane width is narrow, if a vehicle from another lane is recognized as that of your lane
2. When the leading vehicle is driving at the edge of the lane and is not in the detection area

Other:

- When the leading vehicle leaves the sensor detection area, such as at a curve
- When the leading vehicle leaves the sensor detection area due to steering input

THE SYSTEM WILL NOT OPERATE IN THE FOLLOWING CONDITION:

- If the opposing object is a stopped vehicle or a leading vehicle with a speed dramatically slow compared to your own vehicle

This section is abbreviated and does not include all precautions or limitations.

Refer to a Lexus Owner’s Manual for a more comprehensive description of system operation, precautions and limitations.

1. United States Department of Transportation, National Highway Traffic Safety Administration (NHTSA). (2016). TRAFFIC SAFETY FACTS 2016. 2. Drivers should always be responsible for their own safe driving. Please always pay attention to your surroundings and drive safely. Depending on the conditions of roads, vehicles, and weather, etc., the system(s) may not work as intended. See Owner’s Manual for details. 3. The Lexus Safety System+ Pre-Collision System is designed to help avoid collisions or reduce the crash speed and damage in certain frontal collisions only. It is not a substitute for safe and attentive driving. System effectiveness is dependent on road, weather and vehicle conditions. See Owner’s Manual for additional limitations and details. 4. Lane Departure Alert is designed to read lane markers under certain conditions, and provide visual and audible alerts when lane departure is detected. It is not a collision-avoidance system or a substitute for safe and attentive driving. Effectiveness is dependent on road, weather and vehicle conditions. See Owner’s Manual for additional limitations and details. 5. Intelligent High Beams operate at speeds above 25 mph. Factors such as a dirty windshield, weather, lighting and terrain limit effectiveness requiring driver to manually operate the high beams. See Owner’s Manual for additional limitations and details. 6. The Pedestrian Detection System is designed to detect a pedestrian ahead of the vehicle, determine if impact is imminent and help reduce impact speed. It is not a substitute for safe and attentive driving. System effectiveness depends on many factors, such as speed, size and position of pedestrians and weather, light and road conditions. See Owner’s Manual for additional limitations and details. 7. Lane Departure Alert with Steering Assist is designed to read lane markers under certain conditions. It provides a visual and audible alert and slight steering force when lane departure is detected. It is not a collision-avoidance system or a substitute for safe and attentive driving. Effectiveness is dependent on road, weather and vehicle conditions. See Owner’s Manual for additional limitations and details. 8. Lane Keep Assist is designed to read lane markers under certain conditions. It provides a visual and audible alert and slight steering force when lane departure is detected. It is not a collision-avoidance system or a substitute for safe and attentive driving. Effectiveness is dependent on road, weather and vehicle conditions. See Owner’s Manual for additional limitations and details. 9. Dynamic Radar Cruise Control is designed to assist the driver and is not a substitute for safe and attentive driving practices. System effectiveness is dependent on road, weather and traffic conditions. See Owner’s Manual for additional limitations and details. 10. Brake Assist is designed to help the driver take full advantage of the benefits of ABS. It is not a substitute for safe driving practices. Braking effectiveness also depends on proper vehicle maintenance, tire and road conditions. See Owner’s Manual for additional limitations and details. 11. Results achieved during testing using a vehicle traveling at 25 mph and a stationary vehicle. System operation depends on driving environment (including road and weather) and vehicle circumstances. 12. Results achieved during testing using a vehicle traveling at 19 mph and a stationary vehicle/pedestrian; system operation depends on driving environment (including road and weather) and vehicle circumstances. 13. Vehicle Stability Control is an electronic system designed to help the driver maintain vehicle control under adverse conditions. It is not a substitute for safe and attentive driving practices. Factors including speed, road conditions, weather and driver steering input can all affect whether VSC will be effective in preventing a loss of control. See Owner’s Manual for additional limitations and details.